Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.938
Filtrar
1.
Chemosphere ; 354: 141674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462186

RESUMO

This review critically examines the effectiveness of ion-imprinted membranes (IIMs) in selectively recovering lithium (Li) from challenging sources such as seawater and brine. These membranes feature customized binding sites that specifically target Li ions, enabling selective separation from other ions, thanks to cavities shaped with crown ether or calixarene for improved selectivity. The review thoroughly investigates the application of IIMs in Li extraction, covering extensive sections on 12-crown-4 ether (a fundamental crown ether for Li), its modifications, calixarenes, and other materials for creating imprinting sites. It evaluates these systems against several criteria, including the source solution's complexity, Li+ concentration, operational pH, selectivity, and membrane's ability for regeneration and repeated use. This evaluation places IIMs as a leading-edge technology for Li extraction, surpassing traditional methods like ion-sieves, particularly in high Mg2+/Li+ ratio brines. It also highlights the developmental challenges of IIMs, focusing on optimizing adsorption, maintaining selectivity across varied ionic solutions, and enhancing permselectivity. The review reveals that while the bulk of research is still exploratory, only a limited portion has progressed to detailed lab verification, indicating that the application of IIMs in Li+ recovery is still at an embryonic stage, with no instances of pilot-scale trials reported. This thorough review elucidates the potential of IIMs in Li recovery, cataloging advancements, pinpointing challenges, and suggesting directions for forthcoming research endeavors. This informative synthesis serves as a valuable resource for both the scientific community and industry professionals navigating this evolving field.


Assuntos
Éteres de Coroa , Éteres de Coroa/química , Lítio/química , Íons , Adsorção
2.
Environ Sci Technol ; 58(8): 3997-4007, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38366979

RESUMO

The electrochemical extraction of lithium (Li) from aqueous sources using electrochemical means is a promising direct Li extraction technology. However, to this date, most electrochemical Li extraction studies are confined to Li-rich brine, neglecting the practical and existing Li-lean resources, with their overall extraction behaviors currently not fully understood. More still, the effect of elevated sodium (Na) concentrations typically found in most Li-lean water sources on Li extraction is unclear. Hence, in this work, we first understand the electrochemical Li extraction behaviors from ultradilute solutions using spinel lithium manganese oxide as the model electrode. We discovered that Li extraction depends highly on the Li concentration and cell operation current density. Then, we switched our focus on low Li to Na ratio solutions, revealing that Na can dominate the electrostatic screening layer, reducing Li ion concentration. Based on these understandings, we rationally employed pulsed electrochemical operation to restructure the electrode surface and distribute the surface-adsorbed species, which efficiently achieves a high Li selectivity even in extremely low initial Li/Na concentrations of up to 1:20,000.


Assuntos
Lítio , Sódio , Lítio/química , Eletrodos , Íons , Sódio/química , Água
3.
Int J Biol Macromol ; 262(Pt 1): 129861, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307434

RESUMO

Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In other sides, conductive polymers can improve the electrochemical properties of the battery, such as charge/discharge rates, cycling stability, and overall energy storage capacity. Therefore, the combination of these two materials can provide acceptable features. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting method to prepare a thin polymer film. Then, polypyrrole (PPy) was blended with cellulose in different weight ratios. To prevent electrical conductivity of blends, PPy was used <10 wt%. The electrochemical properties of prepared electrolytes have been investigated by different methods. The results showed that ionic conductivity was increased by addition of PPy to cellulose due to the creation of pores and also due to the high dielectric constant of conductive polymers. All synthesized electrolytes had suitable ionic conductivity (in the range of 10-3 S cm-1), significant charge capacity, stable cyclic performance, excellent electrochemical stability (above 4.8 V), and high cation transfer number (between 0.38 and 0.66 for pure cellulose and the sample containing 10 wt% PPy).


Assuntos
Celulose , Polímeros , Polímeros/química , Celulose/química , Lítio/química , Pirróis/química , Eletrólitos/química , Íons
4.
Waste Manag ; 178: 105-114, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387254

RESUMO

With the vigorous development of the new energy industry, the use of lithium-ion batteries (LIBs) is growing exponentially, and the recycling of spent LIBs has gradually become a research hotspot. Currently, recycling both cathode and anode materials of LIBs is important to environmental protection and resource recycling. This research reportsa method ofefficient purification and high-quality regeneration of graphite from spent LIBs by surfactant-assisted methanesulfonic acid (MSA). Under the optimal conditions (0.006 mol/L sodium dodecyl sulfonate, 0.25 mol/L MSA, 10 vol% hydrogen peroxide, liquid-solid ratio of 30:1 mL/g, 60 °C, 1.5 h), the purity of the regenerated graphite was 99.7 %, and the recovery efficiency was 98.0 %. The regenerated graphite showed the characteristics of small interplanar spacing, high degree of graphitization, a small number of surface defects, and excellent pore structure, which was closer to commercial graphite. Furthermore, the regenerated graphite electrode exhibited superior rate performance and cycling stability with a high specific capacity of 397.03 mAh/g after 50 cycles at 0.1C and a charge-discharge efficiency of 99.33 %. The recovery of anode graphite beneficial for resource utilization, environmental protection, and cost control throughout the entire production chain.


Assuntos
Grafite , Lítio , Mesilatos , Lítio/química , Tensoativos , Reciclagem
5.
J Environ Manage ; 352: 120021, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38183916

RESUMO

The global response to lithium scarcity is overstretched, and it is imperative to explore a green process to sustainably and selectively recover lithium from spent lithium-ion battery (LIB) cathodes. This work investigates the distinct leaching behaviors between lithium and transition metals in pure formic acid and the auxiliary effect of acetic acid as a solvent in the leaching reaction. A formic acid-acetic acid (FA-AA) synergistic system was constructed to selectively recycle 96.81% of lithium from spent LIB cathodes by regulating the conditions of the reaction environment to inhibit the leaching of non-target metals. Meanwhile, the transition metals generate carboxylate precipitates enriched in the leaching residue. The inhibition mechanism of manganese leaching by acetic acid and the leaching behavior of nickel or cobalt being precipitated after release was revealed by characterizations such as XPS, SEM, and FTIR. After the reaction, 90.50% of the acid can be recycled by distillation, and small amounts of the residual Li-containing concentrated solution are converted to battery-grade lithium carbonate by roasting and washing (91.62% recovery rate). This recycling process possesses four significant advantages: i) no additional chemicals are required, ii) the lithium sinking step is eliminated, iii) no waste liquid is discharged, and iv) there is the potential for profitability. Overall, this study provides a novel approach to the waste management technology of lithium batteries and sustainable recycling of lithium resources.


Assuntos
Formiatos , Lítio , Metais , Lítio/química , Metais/química , Reciclagem , Eletrodos , Fontes de Energia Elétrica , Ácido Acético
6.
J Environ Manage ; 351: 119954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169252

RESUMO

Bioleaching technologies have been shown to be an environmentally friendly and economically beneficial tool for extracting metals from spent lithium-ion batteries (LIBs). However, conventional bioleaching methods have exhibited low efficiency in recovering metals from spent LIBs. Therefore, relied on the sustainability principle of using waste to treat waste, this study employed pyrite (FeS2) as an energy substance with reducing properties and investigated its effects in combination with elemental sulfur (S0) or FeSO4 on metals bioleaching from spent LIBs. Results demonstrated that the bioleaching efficiency was significantly higher in the leaching system constructed with FeS2 + S0, than in the FeS2 + FeSO4 or FeS2 system. When the pulp densities of FeS2, S0 and spent LIBs were 10 g L-1, 5 g L-1 and 10 g L-1, respectively, the leaching efficiency of Li, Ni, Co and Mn all reached 100%. Mechanistic analysis reveals that in the FeS2 + S0 system, the activity and acid-producing capabilities of iron-sulfur oxidizing bacteria were enhanced, promoting the generation of Fe (Ⅱ) and reducible sulfur compounds. Simultaneously, bio-acids were shown to disrupt the structure of the LIBs, thereby increasing the contact area between Fe (Ⅱ) and sulfur compounds containing high-valence metals. This effectively promoted the reduction of high-valence metals, thereby enhancing their leaching efficiency. Overall, the FeS2 + S0 bioleaching process constructed in this study, improved the leaching efficiency of LIBs while also effectively utilizing waste, providing technical support for the comprehensive and sustainable management of solid waste.


Assuntos
Ferro , Lítio , Sulfetos , Lítio/química , Metais , Enxofre , Compostos de Enxofre , Fontes de Energia Elétrica , Reciclagem
7.
Waste Manag ; 174: 140-152, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056363

RESUMO

This study focuses on connecting graphite demand to battery materials demand, providing a solution to the identified shortage of battery materials and promoting sustainable development. This research used modified Hummer's method to synthesize graphene from the recycled graphite and compared it with graphene synthesized from purified recycled graphite. The purification of recycled graphite was implemented by acid curing-leaching and calcination. The analysis showed that the reduction reaction effectively removed oxygen-containing functional groups from the graphene, resulting in enhanced quality of the produced graphene. Hummer's waste acid was used as a leaching reagent for different LIBs' cathode types in waste management. The waste acid was found to be a strong reagent for transition metals leaching and obtained almost full recoveries of Li, Co, Mn, and Ni from spent LIB cathodes. The synthesized graphene exhibited higher specific surface areas and conductivity values compared to battery-grade graphite. The electrochemical performance of the graphene sheets in lithium half-cells was evaluated, and it was found that the graphene synthesized from recycled graphite enabled increased lithium insertion at active sites, suggesting its potential for enhanced lithium retention. Furthermore, a life cycle assessment study was conducted to evaluate the environmental impacts of the recycling and synthesis processes. This study demonstrates the potential of recycling graphite from spent battery anodes to produce high-quality graphene with improved electrochemical properties.


Assuntos
Grafite , Gerenciamento de Resíduos , Lítio/química , Reciclagem/métodos , Fontes de Energia Elétrica
8.
Waste Manag ; 174: 88-95, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38035661

RESUMO

With the extensive use of lithium-ion batteries (LIBs), neglecting to recycle graphite anodes from LIBs leads to environmental pollution and the waste of graphite resources. Thus, developing an efficient and environment-protecting approach to reusing spent graphite anodes is necessary. Here, high value-added graphene sheets (GS), carbon nanohorns (CNHs), fluorine-doped CNHs (F-CNHs), and amorphous carbon nanoballs (ACNs) were prepared from spent graphite anodes of LIBs via DC arc plasma. In order to control the conversion of spent graphite anodes into various carbon nanomaterials, the growth mechanism of carbon nanomaterials is investigated by quenching rate. Benefiting from the extremely high quenching rates (>1.8 × 106 K/s) produced by DC arc plasma, the particle size of the prepared ACNs and CNHs is small and evenly distributed. The CNHs show a "dahlia-like" structure, and the number of graphene layers is only 3-8. Furthermore, the structural transformation mechanism of carbon nanomaterials is researched by deposition temperature. The ACNs, few-layer GS, and CNHs produced by the high quenching rates are unstable and prone to structural transformation. When these carbon nanomaterials are deposited on the cathode surface and cathode holder, the ACNs, "dahlia-like" CNHs, and GS undergo processes of fusing and overlaying at high temperatures, respectively, resulting in the agglomeration and increased particle size of ACNs and "seed-like" CNHs. Meanwhile, the GS is bent and converted into carbon nanocages (CBCs). Overall, the carbon nanomaterials prepared using spent anodes from LIBs by arc plasma are a facile, environment-friendly, and economical strategy to achieve high value-added utilization of the graphite.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Carbono/química , Lítio/química , Íons , Nanoestruturas/química , Eletrodos
9.
J Am Soc Mass Spectrom ; 35(1): 166-171, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38113534

RESUMO

Glycans are complex structures that require MS/MS for detailed structural elucidation. Incorporating metals can provide more structural information by inhibiting glycosidic cleavage and enhancing cross-ring fragmentation. A direct analysis was performed using lithium doping and IR-MALDESI to induce cross-ring fragmentation of glycans. The protonated and lithiated versions of the two glycans were isolated and subjected to HCD. For protonated glycans, only glycosidic cleavages were observed. Using lithium doping, MS/MS consisted of abundant cross-ring fragments. Seventeen cross-ring fragments were detected across both glycans using lithium-doped ESI. This is the first incorporation of metal doping in IR-MALDESI to achieve cross-ring fragments in MS/MS analysis.


Assuntos
Lítio , Espectrometria de Massas em Tandem , Lítio/química , Polissacarídeos/química , Metais/química , Espectrometria de Massas por Ionização por Electrospray
10.
Waste Manag ; 174: 362-370, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101232

RESUMO

Large amounts of titanium white waste are generated in the production of titanium dioxide using sulphate method, which in turn can be used to prepare LiFePO4 cathode material, thereby reducing environmental risks and achieving resource recovery. However, a key challenge lies in the elimination of impurities. In this work, a cost-efficient and straightforward approach based on phase transformation during hydrothermal treatment was proposed to utilize titanium white waste with calcium dihydrogen phosphate for the preparation of LiFePO4 cathode material. The content of Fe in the leachate was enriched to 81.5 g/L after purification, while 99.9 % of Ti and 98.36 % of Al and were successfully removed. In the subsequent process for Fe/P mother liquor preparation, the losses of Fe and P were only 5.82 % and 2.81 %, respectively. The Fe and P contents of the synthesized FePO4 product were 29.47 % and 17.08 %, respectively, and the Fe/P molar ratio was 0.986. Crystal phase of the product matched well with standard iron phosphate, and the lamellar microstructure of FePO4 was uniform with the particle size ranging from 3 to 5 µm. Moreover, the contents of impurities in the product were far below the standard. The initial discharge of LiFePO4 synthesized by the iron phosphate was 160.6 mAh.g-1 at 0.1C and maintained good reversible capacity after 100 cycles. This work may provide new strategy for preparing LiFePO4 cathode material from industrial solid waste.


Assuntos
Fosfatos de Cálcio , Compostos Férricos , Ferro , Lítio , Titânio , Ferro/química , Lítio/química , Cálcio , Fosfatos/química , Eletrodos
11.
Phys Chem Chem Phys ; 25(44): 30308-30318, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934509

RESUMO

Acetylcholinesterase (AChE) is an important hydrolase in cholinergic synapses and a candidate target in the treatment of Alzheimer's disease. The lithium treatment widely used in neurological disorders can alter the AChE activity, yet the underlying mechanism of how the ion species regulate the enzymatic activity remains unclear. In this work, we performed combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations and well-tempered metadynamics to understand the modulation of human AChE (hAChE) activity using three alkali metal ions (Li+, Na+, and K+) in different concentrations. Our simulations show that the binding affinity and catalytic activity are affected by different ion species through allosteric ion coordination geometries on the hAChE complex and distant electrostatic screening effect. A Li+ cluster involving D330, E393, and D397 residues and three Li+ ions was found to be highly conserved and can be critical to the enzyme activity. Binding energy calculations indicate that the electrostatic screening from allosterically bound cations can affect the key residues at the catalytic site and active-site gorge, including E199. Furthermore, an increase in ion concentration can lead to lower reactivity, especially for Li+ ions, which exhibit more cation-hAChE contacts than Na+ and K+. The selective ion binding and their preferred modulation on hAChE are highly related to ion species. This work provides a molecular perspective on selective modulation by different ion species of the enzyme catalytic processes.


Assuntos
Acetilcolinesterase , Metais Alcalinos , Humanos , Acetilcolinesterase/química , Metais Alcalinos/química , Lítio/química , Sódio/química , Cátions
12.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895065

RESUMO

Nucleoside radicals are key intermediates in the process of DNA damage, and alkali metal ions are a common group of ions in living organisms. However, so far, there has been a significant lack of research on the structural effects of alkali metal ions on nucleoside free radicals. In this study, we report a new method for generating metalized nucleoside radical cations in the gas phase. The radical cations [Ade+M-H]•+ (M = Li, Na) are generated by the 280 nm ultraviolet photodissociation (UVPD) of the precursor ions of lithiated and sodiated ions of 2-iodoadenine in a Fourier transform ion cyclotron resonance (FT ICR) cell. Further infrared multiphoton dissociation (IRMPD) spectra of both radical cations were recorded in the region of 2750-3750 cm-1. By combining these results with theoretical calculations, the most stable isomers of both radicals can be identified, which share the common characteristics of triple coordination patterns of the metal ions. For both radical species, the lowest-energy isomers undergo hydrogen transfer. Although the sugar ring in the most stable isomer of [Ade+Li-H]•+ is in a (South, syn) conformation similar to that of [Ado+Na]+, [Ade+Na-H]•+ is distinguished by the unexpected opening of the sugar ring. Their theoretical spectra are in good agreement with experimental spectra. However, due to the flexibility of the structures and the complexity of their potential energy surfaces, the hydrogen transfer pathways still need to be further studied. Considering that the free radicals formed directly after C-I cleavage have some similar spectral characteristics, the existence of these corresponding isomers cannot be ruled out. The findings imply that the structures of nucleoside radicals may be significantly influenced by the attached alkali metal ions. More detailed experiments and theoretical calculations are still crucial.


Assuntos
Adenosina , Metais Alcalinos , Nucleosídeos , Metais Alcalinos/química , Lítio/química , Sódio/química , Cátions/química , Hidrogênio , Modelos Teóricos , Açúcares , Radicais Livres , Análise Espectral
13.
Environ Sci Pollut Res Int ; 30(53): 114327-114335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37861847

RESUMO

The spent carbon cathode (SCC) is a hazardous solid waste from aluminum production. It has an abundant carbon source and a unique graphitic carbon layer structure, making it a valuable waste for recycling. This paper uses alkaline and acid leaching methods to report a straightforward way of extracting recovered carbon (RC) from SCC as anode material for lithium-ion batteries (LIBs). The results show that alkaline and acid leaching conditions at 70 °C with 1 M NaOH and HCl solution individually in 6 h and a liquid-solid ratio of 20:1 can result in RC with up to 94.63% carbon content than 49.38% in SCC, exhibiting a typical graphite structure. SCC and RC materials are obtained after calcination at 400 °C in an inert atmosphere and used as anode materials (SCC-400 and RC-400). In this paper, The initial charging specific capacities are 490.0 mA h g-1, 195.4 mA h g-1, and 423.2 mA h g-1and initial coulombic efficiencies (ICE) are 67.8%, 78.9%, and 72.0% of RC-400, SCC, and SCC-400. RC-400 also shows excellent capacity retention and impedance values. This exciting finding provides a viable, non-hazardous, and resourceful method for treating and disposing of SCC from aluminum electrolysis.


Assuntos
Grafite , Lítio , Lítio/química , Alumínio , Carbono , Fontes de Energia Elétrica , Eletrodos , Reciclagem
14.
Chem Pharm Bull (Tokyo) ; 71(10): 792-797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779082

RESUMO

Chiral lithium binaphtholates prepared from the corresponding binaphthols and lithium tert-butoxide effectively catalyze the asymmetric Michael additions of ketones to poorly reactive acrylamides. The lithium binaphtholate catalyst mediates ketone deprotonation and enantioselective carbon-carbon bond formation to the acrylamide to deliver the Michael adduct in good yield and enantioselectivity. A small excess of lithium tert-butoxide relative to the binaphthol successfully enolizes the ketone in the initial stage of the reaction to promote the Michael reaction. Computational analysis of the transition state suggested that the 3- and 3'-phenyl groups of the binaphtholate catalyst regulate the orientation of the lithium enolate and the subsequent approach of the acrylamide, leading to superior enantioselectivity.


Assuntos
Acrilamidas , Lítio , Lítio/química , Acrilamida , Estereoisomerismo , Cetonas/química , Catálise
15.
Environ Sci Technol ; 57(39): 14747-14759, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721998

RESUMO

Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.


Assuntos
Lagos , Lítio , Lagos/química , Lítio/química , Cloreto de Sódio , Termodinâmica , Cátions
16.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420774

RESUMO

Lithium-ion batteries are widely used in a variety of fields due to their high energy density, high power density, long service life, and environmental friendliness. However, safety accidents with lithium-ion batteries occur frequently. The real-time safety monitoring of lithium-ion batteries is particularly important during their use. The fiber Bragg grating (FBG) sensors have some additional advantages over conventional electrochemical sensors, such as low invasiveness, electromagnetic anti-interference, and insulating properties. This paper reviews lithium-ion battery safety monitoring based on FBG sensors. The principles and sensing performance of FBG sensors are described. The single-parameter monitoring and dual-parameter monitoring of lithium-ion batteries based on FBG sensors are reviewed. The current application state of the monitored data in lithium-ion batteries is summarized. We also present a brief overview of the recent developments in FBG sensors used in lithium-ion batteries. Finally, we discuss future trends in lithium-ion battery safety monitoring based on FBG sensors.


Assuntos
Fontes de Energia Elétrica , Lítio , Lítio/química , Íons
17.
J Mol Graph Model ; 122: 108491, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37126909

RESUMO

The search of new materials having suitable characteristics to trap hydrogen for fuel applications is greatly challenging due to the stringent requirements that such materials must meet. In this sense, with the aid of computational chemistry, significant advances can be achieved. The present work explores the adsorption of hydrogen molecules by lithium clusters (Lin, where n = 1-6) coordinated to a graphitic carbon nitride (heptazine, gC3N4) cavity. The study was conducted using the density functional theory (M06-2X-D3) in combination with the def2-TZVP basis set. Our results suggest that lithium atoms in the gC3N4-cavity can coordinate up to 10 hydrogen molecules with bond energies in the range -0.10 to -0.19 eV. The [gC3N4Li5]+ and [gC3N4Li6] systems resulted to be the most promising in terms of lithium coordination. They feature the highest stabilization energies for hydrogen adsorption. According to the calculated Gibbs free energies for these systems, H2 adsorption remains a spontaneous process even at 400 K.


Assuntos
Hidrogênio , Lítio , Hidrogênio/química , Lítio/química , Adsorção , Íons
18.
J Environ Manage ; 343: 118197, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216767

RESUMO

Despite the increased demand for resource recovery from spent lithium-ion batteries (LIBs), low Mn leaching efficiencies have hindered the development of this technology. A novel process was devised to enhance the dissolution of metals by producing citric acid using a molasses medium by Penicillium citrinum. This investigation used response surface methodology to investigate the influence of molasses concentration and media components on citric acid production, which demonstrated that molasses (18.5% w/w), KH2PO4 (3.8 g/L), MgSO4.7H2O (0.11 g/L), and methanol (1.2% (v/v)) were the optimum values leading to the production of 31.50 g/L citric acid. Afterward, optimum inhibitor concentrations (iodoacetic acid: 0.05 mM) were added to accumulate citric acid, resulting in maximum bio-production (40.12 g/L) of citric acid. The pulp density and leaching time effect on metals dissolution was investigated in enriched-citric acid spent medium. The suitable conditions were a pulp density of 70 g/L and a leaching duration of 6 days, which led to the highest dissolution of Mn (79%) and Li (90%). Based on the results of the TCLP tests, the bioleaching residue is non-hazardous, suitable for safe disposal, and does not pose an environmental threat. Moreover, nearly 98% of Mn was extracted from the bioleaching solution with oxalic acid at 1.2 M. XRD, and FE-SEM analyses were utilized for further bioleaching and precipitation mechanism analysis.


Assuntos
Lítio , Manganês , Lítio/química , Reciclagem/métodos , Metais/química , Fontes de Energia Elétrica , Ácido Cítrico/química
19.
Environ Sci Technol ; 57(15): 6320-6330, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37027336

RESUMO

Membranes offer a scalable and cost-effective approach to ion separations for lithium recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, we adopt experimental and computational approaches to analyze the effect of pH and feed salinity and elucidate key selectivity mechanisms. Our data set comprises over 750 original ion rejection measurements, spanning five salinities and two pH levels, collected using brine solutions that model three salt-lake compositions. Our results demonstrate that the Li+/Mg2+ selectivity of polyamide membranes can be enhanced by 13 times with acid-pretreated feed solutions. This selectivity enhancement is attributed to the amplified Donnan potential from the ionization of carboxyl and amino moieties under low solution pH. As feed salinities increase from 10 to 250 g L-1, the Li+/Mg2+ selectivity decreases by ∼43%, a consequence of weakening exclusion mechanisms. Further, our analysis accentuates the importance of measuring separation factors using representative solution compositions to replicate the ion-transport behaviors with salt-lake brine. Consequently, our results reveal that predictions of ion rejection and Li+/Mg2+ separation factors can be improved by up to 80% when feed solutions with the appropriate Cl-/SO42- molar ratios are used.


Assuntos
Lagos , Lítio , Lítio/química , Lagos/química , Cloreto de Sódio , Sais/química
20.
Adv Sci (Weinh) ; 10(18): e2301045, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37096838

RESUMO

Carbon-based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next-generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state-of-the-art overview of these advanced carbon-based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium-ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter-layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon-based electrodes in energy storage and conversion.


Assuntos
Fontes de Energia Elétrica , Carbono/química , Eletrodos , Transferência de Energia , Nanotubos de Carbono/química , Pontos Quânticos , Grafite/química , Condutividade Elétrica , Lítio/química , Técnicas Eletroquímicas , Sódio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...